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Abstract: In today's era of rapid advancements in medical technology, non-invasive prenatal testing 

(NIPT) enables the detection of foetal abnormalities. The timing of such testing is crucial in 

mitigating risks associated with the narrowing treatment window. This study first investigates the 

relationship between Y chromosome concentration and both gestational age and maternal body mass 

index (BMI). Employing both multiple linear regression and polynomial regression models, it further 

establishes the functional relationship between Y chromosome concentration and these maternal 

parameters, calculating mean squared errors of 0.0978 and 0.0987 respectively for the two models. 

Building upon this, an optimised model was established incorporating five additional indicators: 

height, weight, age, detection error, and the proportion of Y chromosome concentrations meeting the 

standard. Subsequently, a Monte Carlo method was employed to introduce random perturbations of 

0.5%–2% to the Y chromosome concentration. Results demonstrated that the three groups defined in 

this study achieved accuracy rates exceeding 90% under various perturbation levels. Finally, a logistic 

regression model calculated the regression coefficients and p-values for each feature, yielding a 

ranked importance order. This enabled the extraction of coefficients for the five features to determine 

the formula for the classification method. 

1. Introduction 

Since China established its family planning policy as a fundamental national strategy in 1982, the 

concept of eugenics and optimal childbirth has gradually taken root in public consciousness. However, 

due to the impact of natural and social environmental changes, the rate of foetal defects has continued 

to rise. Statistics indicate approximately 900,000 new cases of birth defects occur annually in China 

[1]. Therefore, determining foetal health and identifying compromised pregnancies at the earliest 

stage is crucial, as delay risks shortening the therapeutic window. Early and standardised prenatal 

diagnosis plays a vital role in effectively preventing the occurrence of congenital anomalies. Among 

these, the primary foetal abnormalities include Down syndrome, Edwards syndrome, and Patau 

syndrome. These three conditions are determined by whether the proportion of foetal chromosome 

21, 18, and 13 ‘free DNA fragments’ (referred to as ‘chromosome concentration’) is abnormal. The 

accuracy of this method is determined by the concentration of foetal sex chromosomes, which in turn 

correlates with other physiological indicators. Studying these indicators to understand variations in 

sex chromosome concentration enables the determination of optimal timing for NIPT and more 

precise assessment of foetal abnormalities. 

2. Model Assumptions 

Assumption 1: The error between the predicted values and actual values of the multiple linear 

regression model follows a normal distribution; 

Assumption 2: The BMI in the appendix has been accurately calculated; 

Assumption 3: Gestational age is calculated based on the date of last menstrual period and the time 

of examination, and the examination data for gestational age in the known dataset is accurate and 
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error-free. 

3. Model Formulation and Solution 

3.1 Data Preprocessing and Analysis 

First, scatter plots were plotted separately for the relationship between Y chromosome 

concentration and both gestational age and maternal body mass index (BMI) to preliminarily assess 

their correlation. The results are shown in Figures 1 and 2: 

 

Fig. 1 Scatter Plot of Fetal Y Chromosome Concentration Versus Gestational Age at Testing 

 

Fig. 2 Scatter plot of foetal Y chromosome concentration versus maternal BMI 

As observed in Figure 1, Y chromosome concentration exhibits a weak trend of increasing with 

gestational age. However, sampling issues result in pronounced segmentation within the data, 

indicating significant challenges in constructing a model correlating gestational period with Y 

chromosome concentration. In contrast, a more pronounced relationship exists between maternal BMI 

and Y chromosome concentration. Figure 2 reveals that Y chromosome concentration exhibits a 

tendency to decrease with increasing BMI. When maternal BMI is at lower levels, the distribution of 

Y chromosome concentrations, though dispersed, maintains a higher average concentration. As BMI 

increases, a downward trend emerges. However, sampling limitations result in considerable 

dispersion in Y-chromosome concentration, particularly with fewer samples in the higher BMI range, 

indicating a complex relationship between BMI and Y-chromosome concentration. Consequently, a 

scientific approach is required to analyse pairwise correlations. 

Subsequently, Spearman's correlation analysis was performed on the raw data. First, the two 

datasets under analysis underwent rank transformation. Taking ‘maternal BMI’ and ‘foetal Y 
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chromosome concentration’ as examples, the raw data for each variable were sorted in ascending 

order, with each data point assigned a rank. Where identical values occurred, the average rank was 

taken. Subsequently, the sum of squared rank differences was computed. Let iR  denote the rank of 

‘maternal BMI’ and iS  denote the rank of Y chromosome concentration. For each sample, rank 

interpolation was performed as follows: 

 i i id R S   (1) 

Substitute into the formula to calculate the Spearman correlation coefficient, the formula for which 

is given in [2]: 

 

2

2

6
1

( 1)

id
r

n n
 




 (2) 

Here, r  denotes the sample Spearman correlation coefficient, and n  represents the total 

number of samples. This formula enables the determination of the strength of correlation between 

maternal BMI and Y chromosome concentration. 

When multiple identical values occur within the variables—for instance, where several samples 

share the same maternal BMI index—the formula requires adjustment to eliminate the influence of 

identical ranks. The corrected formula is: 
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Significance testing determines whether r  are statistically significant. When sample sizes are 

large, the sample Spearman correlation coefficient r  may be approximated as following a normal 

distribution, allowing calculation of its test statistic: 

 1Z r n   (4) 

The value can be calculated based on the test statistic: 

 2 (1 ( ))p Z    (5) 

At a significance level of 0.05, compare the magnitude of with 0.05 to determine whether a 

significant correlation exists. The final results are presented in Table 1. 

Table 1. Spearman's correlation coefficient and p-value 

Correlation coefficient p-value 

Concentration and gestational age: 0.0681 0.0927 

Concentration and BMI: -0.1309 0.0012 

3.2 Multi-objective Optimisation Model 

Prior to establishing a multi-objective optimisation model, pregnant women's BMI values were 

categorised. Given the significant weak negative correlation between Y chromosome concentration 

and maternal BMI, this study first employed the widely used K-means clustering method [3] for 

analysis. 

K-means clustering is an unsupervised learning technique that divides unlabelled data into groups 

sharing common characteristics. Its fundamental approach involves initially guessing the number of 

categories, then randomly selecting several cluster centres. Subsequently, all data points are assigned 

to their nearest centre, forming preliminary groupings. The centres within each group are recalculated, 
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and this process is iterated until the groupings stabilise. Ultimately, similar data points are grouped 

together, aiding in the discovery of inherent structures and patterns within the data. The K-means 

clustering results are presented in Figure 3: 

 

Fig. 3 K-means clustering results 

Additionally, the classification performance of the model was analysed using the contour 

coefficient, CH index, and DBI index, yielding the results for each metric as shown in Table 2: 

Table 2. K-means clustering evaluation metric values 

Coefficient of Contour CH DBI 

0.5869 1207.33 0.5697 

The K-means clustering method was employed to classify pregnant women's BMI values, initially 

dividing them into two categories. However, considering that a mere two-category division struggles 

to adequately reflect the heterogeneity within the pregnant population, the classification results 

proved rather crude. This inadequacy hinders the subsequent determination of the optimal timing for 

NIPT testing. Such oversimplified grouping may compromise the scientific rigour and 

individualisation of testing timing, failing to meet the refined management requirements of actual 

clinical practice. Consequently, it is imperative to refine the classification strategy to enhance its 

practical significance. 

To ensure sufficient data volume within each BMI group, interval-based average sample sizes 

were employed for grouping, yielding five data sets: [26,30), [30,31.18), [31.18,32.57), [32.57,34.32), 

and >34.32. 

We now proceed to establish a multi-objective optimisation model [4], whose objective functions 

are: (1) maximising the probability of Y-chromosome concentration exceeding 0.04; (2) minimising 

the gestational age at testing. This ensures NIPT accuracy while minimising risks associated with 

shortened therapeutic windows. 

To maximise the probability of Y chromosome concentration exceeding 0.04, the objective 

function is designed as the sum of achievement probabilities across each BMI group: 

 1
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Here, G denotes the total number of BMI groups, with the subscript g  corresponding to each 

BMI group; t  represents the testing time point; ( )g gP t  denotes the probability that the Y 

chromosome concentration in the g  group of pregnant women is greater than or equal to 4% at time 

point gt ; 

To minimise the gestational age required for examination and detection, the objective function is 

designed as follows: 
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This formula normalises the detection time point, converting it to a value between 0 and 1 to 
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eliminate dimensional effects. 

As the aforementioned process requires balancing two objective functions, this paper opts to assign 

corresponding weights to them, thereby converting multi-objective optimisation into single-objective 

optimisation. The objective function is established as follows: 
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The relative importance of the two objectives can be set by adjusting the weights. Based on clinical 

experience, ensuring test accuracy is more critical during earlier gestational weeks, at which point the 

F1 weight is set to a higher value. During later gestational weeks, testing should be conducted as early 

as possible to mitigate risks, at which point the F2 weight is set to a higher value. To meet these 

requirements, dynamically varying weights are set according to different testing time points. The 

model testing time point must fall within 10-25 weeks: 10 25t  . 

The probability that Y chromosome concentration exceeds 0.04 in each group of pregnant women 

undergoing testing must not be excessively low: 

 0.8 ( )g gP t  (9) 

At this point, the optimised model expression can be obtained: 
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3.3 Multiple Linear Regression Model 

To comprehensively address the issue of determining foetal abnormalities, this paper extends the 

aforementioned multi-objective optimisation model by incorporating additional influencing factors: 

height, weight, and age. It simultaneously accounts for detection errors and the proportion of foetuses 

meeting the Y chromosome concentration threshold. No processing is required for height, weight, 

and age data. The proportion of foetuses meeting the Y chromosome concentration threshold iy  is 

defined as: 
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Where ijx  represents the Y chromosome concentration in the foetus of the jth pregnant woman 

during the i-th pregnancy period, and iy  denotes the ratio of the number of pregnant women with 

foetal Y chromosome concentrations not below 0.04 during the i-th pregnancy week to the total 

number of pregnant women during that pregnancy period. 

Regarding detection errors, given that GC content serves as a crucial indicator for sequencing 

quality assessment, its abnormal levels may impact foetal Y chromosome concentration, ultimately 

leading to detection errors. In the first question, a significant proportion of data (accounting for 41.68% 

of the total) exhibited GC content values at the margins of the normal range. When constructing the 

multiple linear regression model, data falling outside this range were directly excluded. This approach 
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is unreasonable. This question further examines the impact of detection errors arising from this factor. 

To quantify this effect, a random error is introduced 
2~ (0, )N  . To reflect the influence of GC 

content on this error, an error weighting factor iw  is defined: 
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 100 | 0.4 |i iw a    (14) 

where ix  represents the GC content for each pregnant woman, and  denotes the sample size. 

Finally, construct a new column to detect data errors: 

 , [1, ]i iy w i n   (15) 

The general form of a multiple linear regression model is: 

 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
ˆ x x x x xy x x                  (16) 

Where ŷ  is the Y chromosome concentration, 1x  denotes the gestational age at testing, 2x  

represents the mother's BMI, 3x  indicates age, 4x  denotes height, 5x  denotes weight, 6x  denotes 

the proportion of foetuses meeting the Y chromosome concentration threshold, 7x  denotes the 

detection error, 0  is the constant term, 1 7~   denotes the coefficient for each variable, and 

2~ (0, )N   is the error term. 

Perform parameter estimation using the method of least squares: 

 
2

1

min ( )ˆ
n

i

i

iyy


  (17) 

where iy  denotes the actual observed value and ˆ
iy  denotes the predicted value. 
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K-means clustering was performed on height, weight, age, examination error, and the proportion 

meeting Y-chromosome concentration standards. The optimal partitioning scheme was selected by 

plotting an elbow plot and calculating the sum of squares within clusters (SSE), contour coefficient, 

CH index, and DBI index. The elbow plot is depicted in Figure 4: 

 

Fig. 4 k-means clustering elbow diagram 

As shown in Figure 4, the intra-cluster sum of squares decreases sharply between cluster numbers 

1 and 5, while the rate of decline slows for cluster numbers exceeding 5. An excessively low number 
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of clusters fails to meet the precision requirements of medical research, whereas an excessively high 

number significantly increases the complexity of clinical implementation. Consequently, relevant 

metrics were calculated for 3 to 6 clusters to facilitate further selection. The computational results are 

presented in Table 3: 

Table 3. Cluster-specific correlation metrics 

Cluster number K Coefficient of Contour CH Index DBI Index 

3 0.2787 703.9638 1.1885 

4 0.2518 588.1545 1.2164 

5 0.2427 520.0769 1.3413 

6 0.2028 468.7164 1.3751 

The data in the summary table indicates that classification performance at k=3 is marginally 

superior to other cluster numbers. Employing the optimal classification cluster number of 3, the 

probability function is calculated using a multiple linear regression model incorporating additional 

factors. Subsequently, the K-means classification results are substituted into the objective function to 

determine the optimal NIPT timing for each group. The computational results are presented in Table 

4: 

Table 4. Three Scheme comparing 

Croup Num Optimal timing (weeks) 

1 16.0 

2 14.7 

3 15.2 

As shown in Table 4, the optimal detection time point occurs earlier in Group 2 (low height and 

low weight with low BMI), whereas it occurs later in Group 1 (tall height and large weight with high 

BMI). 

3.4 Logistic Regression Model 

Considering the chromosomal differences between female and male foetuses, this paper 

independently explores the influence of multiple factors on foetal abnormalities in females, providing 

a method for determining such abnormalities. This constitutes a binary classification problem. Given 

that logistic regression is a widely applied statistical learning method for classification tasks, 

particularly suited to binary classification, this approach is employed to establish the analytical model. 

The core principle of logistic regression involves mapping the output of linear regression onto the 

interval (0,1) via a sigmoid function, thereby representing the probability of a sample belonging to a 

particular class. When this probability is greater than or equal to a predetermined threshold (typically 

0.5), the model predicts the sample belongs to the positive class; otherwise, it belongs to the negative 

class. The specific form of the sigmoid function is: 
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Among these, z  is the result of a linear combination; w  represents the weight vector, indicating 

the importance of each feature; ix  denotes the input feature vector; b  is the bias term. 

Logistic regression solves model parameters through maximum likelihood estimation, thereby 

deriving the likelihood function. This function serves as the starting point for the objective function 

when deducing optimal parameters. The likelihood function identifies a set of parameters that 

maximises the probability of the observed outcomes. The form of the likelihood function [5] is: 
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Here, L  denotes the probability of observing the current data given the model parameters w  

and b ; N  denotes the total sample size; 

As logical regression lacks an analytical solution, optimal parameters cannot be directly 

determined. Consequently, iterative optimisation algorithms are required. The gradient descent 

method is thus employed, which calculates the gradient of the loss function with respect to the model 

parameters to determine the direction of parameter updates—namely, adjusting parameters in the 

opposite direction of the gradient to progressively reduce the loss. This process enables the model's 

output probability distribution to approximate the true distribution. At each iteration, gradient descent 

adjusts the weights based on the prediction error under the current parameters, ultimately converging 

upon the parameter values that minimise the loss. This achieves an effective solution for the model 

parameters. 

By solving the logistic regression model, the regression coefficients and corresponding p-values 

for the 20 feature variables were obtained. Selected results are presented in Table 5: 

Table 5. Feature variable regression coefficients and p-values 

Feature Name Coefficient of regression p-value 

Age -0.2224 0.0007 

Height 0.0192 0.9753 

Weight 0.0069 0.9909 

Maternal BMI -0.0729 0.9636 

Z-score for chromosome 21 0.4096 0.0483 

GC content for chromosome 18 629.1031 0.1457 

Percentage of filtered read segments 33.6380 0.2563 

The regression coefficient reflects the extent to which a feature influences classification outcomes; 

a larger absolute value indicates a stronger impact on predictive results. Furthermore, if the p-value 

falls below the significance threshold (e.g., 0.05), the feature is deemed to exert a statistically 

significant effect on classification results. The results indicate the six most influential features for 

predicting foetal abnormalities are: GC content on chromosome 21, GC content on chromosome 18, 

GC content on chromosome 13, GC content, proportion of alignment on the reference genome, and 

X chromosome concentration. Their corresponding regression coefficients are -1006.266, 629.103, 

576.524, -236.889, -73.561, and -61.348, with corresponding p-values of 0.00017, 0.14569, 0.06277, 

0.05683, 0.36793, and 0.00007. According to medical knowledge, GC content on different 

chromosomes reflects their specific genetic composition and structural characteristics. Alterations in 

GC content may affect processes such as DNA unwinding and transcription, leading to abnormal gene 

expression and triggering foetal developmental abnormalities. Therefore, the model results appear 

reasonable. 

Observation of the above results reveals instances where regression coefficients exhibit large 

absolute values alongside large p-values. This is a common and reasonable occurrence. It typically 

indicates that the feature may exhibit a strong tendency to influence outcomes, but due to factors such 

as small sample size, multicollinearity, insufficient variance, or noise interference, the current data 

fails to provide sufficient statistical evidence to confirm its significance. 

Following the results, this paper conducted an effectiveness analysis of the logistic regression 

model, calculating the likelihood ratio chi-squared value, p-value, and classification accuracy, and 

plotting the ROC curve as shown in Figure 5: 
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Fig. 5 ROC curve diagram 

The likelihood ratio chi-squared value obtained is 107.035, with a p-value of 6.799 × 10⁻¹⁴. This 

indicates that the logistic regression model is significantly effective overall, demonstrating a robust 

ability to explain the relationship between the independent variables and the dependent variable 

“chromosomal aneuploidy”. The calculated classification accuracy reached 0.887, indicating strong 

predictive capability for sample classification. The model accurately identifies chromosomal 

aneuploidy in most cases. However, the ROC curve area under the curve (AUC) of 0.55, as shown in 

the figure, is only marginally above 0.5. This suggests room for improvement in distinguishing 

positive from negative samples, with potential suboptimal prediction for certain cases. In summary, 

the logistic regression model is generally effective with decent classification accuracy, though room 

for optimisation remains in precisely distinguishing sample categories. 

Five of the top six most influential features identified by both the logistic regression and random 

forest models overlap: GC content of chromosome 13, GC content of chromosome 18, GC content of 

chromosome 21, GC content, and X chromosome concentration. Consequently, a method for 

determining female foetal abnormalities was established based on the metric values of these five 

features. By re-training the logistic regression model to learn the relationship between features and 

the dependent variable, the coefficients and intercept for these five features were extracted. This 

ultimately yielded the following classification formula: 

 
1 2

3 4 5

log ( ) 20.5021 25.4383 73.2661

33.0427 23.5054 14.7007
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If log ( ) 0it p  , it is determined to be an abnormal female foetus; if log ( ) 0it p   , it is 

determined to be a normal female foetus. 

4. Summary 

This study presents both qualitative and quantitative analyses of the relationship between foetal Y 

chromosome concentration and maternal BMI alongside gestational age at detection, establishing a 

multiple linear regression model. By converting multi-objective optimisation into single-objective 

optimisation through assigning weights according to target importance, the complexity of the model 

was reduced. Whilst exploring multiple characteristic indicators affecting female foetal abnormalities 

and determining diagnostic methods, the logistic regression model—a widely applied statistical 

learning method for classification problems, particularly suited to binary classification tasks—

demonstrated high compatibility with Problem 4, exhibiting favourable model adaptability. However, 

certain limitations persist, such as suboptimal model fit due to insufficient consideration of 

influencing factors. This may stem from the limited number of adopted factors, potentially obscuring 
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numerous latent relationships. Further research will address this issue in subsequent stages. 
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