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Abstract: In today's era of rapid advancements in medical technology, non-invasive prenatal testing
(NIPT) enables the detection of foetal abnormalities. The timing of such testing is crucial in
mitigating risks associated with the narrowing treatment window. This study first investigates the
relationship between Y chromosome concentration and both gestational age and maternal body mass
index (BMI). Employing both multiple linear regression and polynomial regression models, it further
establishes the functional relationship between Y chromosome concentration and these maternal
parameters, calculating mean squared errors of 0.0978 and 0.0987 respectively for the two models.
Building upon this, an optimised model was established incorporating five additional indicators:
height, weight, age, detection error, and the proportion of Y chromosome concentrations meeting the
standard. Subsequently, a Monte Carlo method was employed to introduce random perturbations of
0.5%—-2% to the Y chromosome concentration. Results demonstrated that the three groups defined in
this study achieved accuracy rates exceeding 90% under various perturbation levels. Finally, a logistic
regression model calculated the regression coefficients and p-values for each feature, yielding a
ranked importance order. This enabled the extraction of coefficients for the five features to determine
the formula for the classification method.

1. Introduction

Since China established its family planning policy as a fundamental national strategy in 1982, the
concept of eugenics and optimal childbirth has gradually taken root in public consciousness. However,
due to the impact of natural and social environmental changes, the rate of foetal defects has continued
to rise. Statistics indicate approximately 900,000 new cases of birth defects occur annually in China
[1]. Therefore, determining foetal health and identifying compromised pregnancies at the earliest
stage is crucial, as delay risks shortening the therapeutic window. Early and standardised prenatal
diagnosis plays a vital role in effectively preventing the occurrence of congenital anomalies. Among
these, the primary foetal abnormalities include Down syndrome, Edwards syndrome, and Patau
syndrome. These three conditions are determined by whether the proportion of foetal chromosome
21, 18, and 13 ‘free DNA fragments’ (referred to as ‘chromosome concentration’) is abnormal. The
accuracy of this method is determined by the concentration of foetal sex chromosomes, which in turn
correlates with other physiological indicators. Studying these indicators to understand variations in
sex chromosome concentration enables the determination of optimal timing for NIPT and more
precise assessment of foetal abnormalities.

2. Model Assumptions

Assumption 1: The error between the predicted values and actual values of the multiple linear
regression model follows a normal distribution;

Assumption 2: The BMI in the appendix has been accurately calculated:;

Assumption 3: Gestational age is calculated based on the date of last menstrual period and the time
of examination, and the examination data for gestational age in the known dataset is accurate and
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error-free.

3. Model Formulation and Solution
3.1 Data Preprocessing and Analysis

First, scatter plots were plotted separately for the relationship between Y chromosome
concentration and both gestational age and maternal body mass index (BMI) to preliminarily assess
their correlation. The results are shown in Figures 1 and 2:
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Fig. 1 Scatter Plot of Fetal Y Chromosome Concentration Versus Gestational Age at Testing
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Fig. 2 Scatter plot of foetal Y chromosome concentration versus maternal BMI

As observed in Figure 1, Y chromosome concentration exhibits a weak trend of increasing with
gestational age. However, sampling issues result in pronounced segmentation within the data,
indicating significant challenges in constructing a model correlating gestational period with Y
chromosome concentration. In contrast, a more pronounced relationship exists between maternal BMI
and Y chromosome concentration. Figure 2 reveals that Y chromosome concentration exhibits a
tendency to decrease with increasing BMI. When maternal BMI is at lower levels, the distribution of
Y chromosome concentrations, though dispersed, maintains a higher average concentration. As BMI
increases, a downward trend emerges. However, sampling limitations result in considerable
dispersion in Y-chromosome concentration, particularly with fewer samples in the higher BMI range,
indicating a complex relationship between BMI and Y-chromosome concentration. Consequently, a
scientific approach is required to analyse pairwise correlations.

Subsequently, Spearman's correlation analysis was performed on the raw data. First, the two
datasets under analysis underwent rank transformation. Taking ‘maternal BMI’ and ‘foetal Y
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chromosome concentration’ as examples, the raw data for each variable were sorted in ascending
order, with each data point assigned a rank. Where identical values occurred, the average rank was

taken. Subsequently, the sum of squared rank differences was computed. Let R; denote the rank of
‘maternal BMI’ and S; denote the rank of Y chromosome concentration. For each sample, rank
interpolation was performed as follows:

di = Ri - Si (1)
Substitute into the formula to calculate the Spearman correlation coefficient, the formula for which
is given in [2]:
6> d?
r=1-— L )
n(nz —1)

Here, r denotes the sample Spearman correlation coefficient, and N represents the total
number of samples. This formula enables the determination of the strength of correlation between
maternal BMI and Y chromosome concentration.

When multiple identical values occur within the variables—for instance, where several samples
share the same maternal BMI index—the formula requires adjustment to eliminate the influence of
identical ranks. The corrected formula is:

> (R-R)S -5)

r= ©)

J[izl‘,(Ri R = S IS -8 - 0 =]

Significance testing determines whether r are statistically significant. When sample sizes are
large, the sample Spearman correlation coefficient r may be approximated as following a normal
distribution, allowing calculation of its test statistic:

Z=ryn-1 4)
The value can be calculated based on the test statistic:
p=2x(1-¢(Z)) (5)

At a significance level of 0.05, compare the magnitude of with 0.05 to determine whether a
significant correlation exists. The final results are presented in Table 1.

Table 1. Spearman's correlation coefficient and p-value

Correlation coefficient p-value
Concentration and gestational age: 0.0681 0.0927
Concentration and BMI: -0.1309 0.0012

3.2 Multi-objective Optimisation Model

Prior to establishing a multi-objective optimisation model, pregnant women's BMI values were
categorised. Given the significant weak negative correlation between Y chromosome concentration
and maternal BMI, this study first employed the widely used K-means clustering method [3] for
analysis.

K-means clustering is an unsupervised learning technique that divides unlabelled data into groups
sharing common characteristics. Its fundamental approach involves initially guessing the number of
categories, then randomly selecting several cluster centres. Subsequently, all data points are assigned
to their nearest centre, forming preliminary groupings. The centres within each group are recalculated,
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and this process is iterated until the groupings stabilise. Ultimately, similar data points are grouped
together, aiding in the discovery of inherent structures and patterns within the data. The K-means
clustering results are presented in Figure 3:

0 O
° ® Cluster 0
@ Cluster 1
.
oY
@
[ B a
0
¢ F & D N Ne o N
Q- Q- Q- Q- Q- Q- Q- Q- Q-

Y chromosome concentration
Fig. 3 K-means clustering results

Additionally, the classification performance of the model was analysed using the contour
coefficient, CH index, and DBI index, yielding the results for each metric as shown in Table 2:

Table 2. K-means clustering evaluation metric values

Coefficient of Contour CH DBI
0.5869 1207.33 0.5697

The K-means clustering method was employed to classify pregnant women's BMI values, initially
dividing them into two categories. However, considering that a mere two-category division struggles
to adequately reflect the heterogeneity within the pregnant population, the classification results
proved rather crude. This inadequacy hinders the subsequent determination of the optimal timing for
NIPT testing. Such oversimplified grouping may compromise the scientific rigour and
individualisation of testing timing, failing to meet the refined management requirements of actual
clinical practice. Consequently, it is imperative to refine the classification strategy to enhance its
practical significance.

To ensure sufficient data volume within each BMI group, interval-based average sample sizes
were employed for grouping, yielding five data sets: [26,30), [30,31.18), [31.18,32.57), [32.57,34.32),
and >34.32.

We now proceed to establish a multi-objective optimisation model [4], whose objective functions
are: (1) maximising the probability of Y-chromosome concentration exceeding 0.04; (2) minimising
the gestational age at testing. This ensures NIPT accuracy while minimising risks associated with
shortened therapeutic windows.

To maximise the probability of Y chromosome concentration exceeding 0.04, the objective
function is designed as the sum of achievement probabilities across each BMI group:

max F, :éi P,(t,) (6)

Here, G denotes the total number of BMI groups, with the subscript g corresponding to each
BMI group; t represents the testing time point; P,(t,) denotes the probability that the Y
chromosome concentration inthe g group of pregnant women is greater than or equal to 4% at time
point t,;

To minimise the gestational age required for examination and detection, the objective function is
designed as follows:

. 1 &t -10
minF, == 2 7
2 G 15 ()

g=1

This formula normalises the detection time point, converting it to a value between 0 and 1 to
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eliminate dimensional effects.

As the aforementioned process requires balancing two objective functions, this paper opts to assign
corresponding weights to them, thereby converting multi-objective optimisation into single-objective
optimisation. The objective function is established as follows:

18 t,—10
maXF=C¢)1~6;Pg(tg)—a)2 ; : (8)

The relative importance of the two objectives can be set by adjusting the weights. Based on clinical
experience, ensuring test accuracy is more critical during earlier gestational weeks, at which point the
F1 weight is set to a higher value. During later gestational weeks, testing should be conducted as early
as possible to mitigate risks, at which point the F2 weight is set to a higher value. To meet these
requirements, dynamically varying weights are set according to different testing time points. The
model testing time point must fall within 10-25 weeks: 10<t<?25.

The probability that Y chromosome concentration exceeds 0.04 in each group of pregnant women
undergoing testing must not be excessively low:

0.8<P,(t,) 9)
At this point, the optimised model expression can be obtained:
18 t —10
maxF = - =Y P, (t,) - o, —Zg
G g:]_ g =1

(10)

t{10<t<25
st.
0.8<P,(t,)

3.3 Multiple Linear Regression Model

To comprehensively address the issue of determining foetal abnormalities, this paper extends the
aforementioned multi-objective optimisation model by incorporating additional influencing factors:
height, weight, and age. It simultaneously accounts for detection errors and the proportion of foetuses
meeting the Y chromosome concentration threshold. No processing is required for height, weight,
and age data. The proportion of foetuses meeting the Y chromosome concentration threshold y, is

defined as:

O,xu<004 005l el
aij >OO4 |€[ ’ ],JE[,n] (ll)

l |J—

y; ==+ (12)

Where X;; represents the Y chromosome concentration in the foetus of the jth pregnant woman

during the i-th pregnancy period, and Y; denotes the ratio of the number of pregnant women with

foetal Y chromosome concentrations not below 0.04 during the i-th pregnancy week to the total
number of pregnant women during that pregnancy period.

Regarding detection errors, given that GC content serves as a crucial indicator for sequencing
quality assessment, its abnormal levels may impact foetal Y chromosome concentration, ultimately
leading to detection errors. In the first question, a significant proportion of data (accounting for 41.68%
of the total) exhibited GC content values at the margins of the normal range. When constructing the
multiple linear regression model, data falling outside this range were directly excluded. This approach
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is unreasonable. This question further examines the impact of detection errors arising from this factor.
To quantify this effect, a random error is introduced &'~ N (0, 0'2) . To reflect the influence of GC

content on this error, an error weighting factor w, is defined:
. 0,x,20.4 i eLn] 13)
. = ) e )
' %,X <0.4
w, =100x|a, —0.4| (14)

where X; represents the GC content for each pregnant woman, and  denotes the sample size.
Finally, construct a new column to detect data errors:

y, =w.e',ie[L,n] (15)

The general form of a multiple linear regression model is:
V=0 + X + 00X, + 0%, + o X, + 06X + O X + 0 X, + & (16)
Where ¥ is the Y chromosome concentration, x denotes the gestational age at testing, x,

represents the mother's BMI, x, indicatesage, x, denotesheight, x, denotesweight, x, denotes
the proportion of foetuses meeting the Y chromosome concentration threshold, x, denotes the

detection error, ¢, is the constant term, 0, ~ 0; denotes the coefficient for each variable, and

&~ N(0,0%) is the error term.
Perform parameter estimation using the method of least squares:

minZ(yi _9i)2 17)
i=1

where Y, denotes the actual observed value and Y, denotes the predicted value.

y = — 0.4208+0.0009x, + 0.0061x, —0.0008x,
+ 0.0028x, —0.0030x, + 0.1379x, —0.0155x,

K-means clustering was performed on height, weight, age, examination error, and the proportion
meeting Y-chromosome concentration standards. The optimal partitioning scheme was selected by
plotting an elbow plot and calculating the sum of squares within clusters (SSE), contour coefficient,
CH index, and DBI index. The elbow plot is depicted in Figure 4:

(18)
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Fig. 4 k-means clustering elbow diagram

As shown in Figure 4, the intra-cluster sum of squares decreases sharply between cluster numbers
1 and 5, while the rate of decline slows for cluster numbers exceeding 5. An excessively low number
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of clusters fails to meet the precision requirements of medical research, whereas an excessively high
number significantly increases the complexity of clinical implementation. Consequently, relevant
metrics were calculated for 3 to 6 clusters to facilitate further selection. The computational results are
presented in Table 3:

Table 3. Cluster-specific correlation metrics

Cluster number K | Coefficient of Contour | CH Index | DBI Index
3 0.2787 703.9638 1.1885
4 0.2518 588.1545 1.2164
5 0.2427 520.0769 1.3413
6 0.2028 468.7164 1.3751

The data in the summary table indicates that classification performance at k=3 is marginally
superior to other cluster numbers. Employing the optimal classification cluster number of 3, the
probability function is calculated using a multiple linear regression model incorporating additional
factors. Subsequently, the K-means classification results are substituted into the objective function to
determine the optimal NIPT timing for each group. The computational results are presented in Table
4.

Table 4. Three Scheme comparing

Croup Num | Optimal timing (weeks)
1 16.0
2 14.7
3 15.2

As shown in Table 4, the optimal detection time point occurs earlier in Group 2 (low height and
low weight with low BMI), whereas it occurs later in Group 1 (tall height and large weight with high
BMI).

3.4 Logistic Regression Model

Considering the chromosomal differences between female and male foetuses, this paper
independently explores the influence of multiple factors on foetal abnormalities in females, providing
a method for determining such abnormalities. This constitutes a binary classification problem. Given
that logistic regression is a widely applied statistical learning method for classification tasks,
particularly suited to binary classification, this approach is employed to establish the analytical model.

The core principle of logistic regression involves mapping the output of linear regression onto the
interval (0,1) via a sigmoid function, thereby representing the probability of a sample belonging to a
particular class. When this probability is greater than or equal to a predetermined threshold (typically
0.5), the model predicts the sample belongs to the positive class; otherwise, it belongs to the negative
class. The specific form of the sigmoid function is:

1
)=
(@) 1+e™* (19)
Z=W'x +b

Amongthese, z istheresultofa linear combination; W represents the weight vector, indicating
the importance of each feature; X; denotes the input feature vector; b is the bias term.

Logistic regression solves model parameters through maximum likelihood estimation, thereby
deriving the likelihood function. This function serves as the starting point for the objective function
when deducing optimal parameters. The likelihood function identifies a set of parameters that
maximises the probability of the observed outcomes. The form of the likelihood function [5] is:

L(w,b) :ﬁP(Yi =1 Xi)yi ‘(1— P(Yi =1 Xi))l_yi (20)
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Here, L denotes the probability of observing the current data given the model parameters W
and b; N denotes the total sample size;

As logical regression lacks an analytical solution, optimal parameters cannot be directly
determined. Consequently, iterative optimisation algorithms are required. The gradient descent
method is thus employed, which calculates the gradient of the loss function with respect to the model
parameters to determine the direction of parameter updates—namely, adjusting parameters in the
opposite direction of the gradient to progressively reduce the loss. This process enables the model's
output probability distribution to approximate the true distribution. At each iteration, gradient descent
adjusts the weights based on the prediction error under the current parameters, ultimately converging
upon the parameter values that minimise the loss. This achieves an effective solution for the model
parameters.

By solving the logistic regression model, the regression coefficients and corresponding p-values
for the 20 feature variables were obtained. Selected results are presented in Table 5:

Table 5. Feature variable regression coefficients and p-values

Feature Name Coefficient of regression p-value

Age -0.2224 0.0007

Height 0.0192 0.9753

Weight 0.0069 0.9909

Maternal BMI -0.0729 0.9636

Z-score for chromosome 21 0.4096 0.0483

GC content for chromosome 18 629.1031 0.1457
Percentage of filtered read segments 33.6380 0.2563

The regression coefficient reflects the extent to which a feature influences classification outcomes;
a larger absolute value indicates a stronger impact on predictive results. Furthermore, if the p-value
falls below the significance threshold (e.g., 0.05), the feature is deemed to exert a statistically
significant effect on classification results. The results indicate the six most influential features for
predicting foetal abnormalities are: GC content on chromosome 21, GC content on chromosome 18,
GC content on chromosome 13, GC content, proportion of alignment on the reference genome, and
X chromosome concentration. Their corresponding regression coefficients are -1006.266, 629.103,
576.524, -236.889, -73.561, and -61.348, with corresponding p-values of 0.00017, 0.14569, 0.06277,
0.05683, 0.36793, and 0.00007. According to medical knowledge, GC content on different
chromosomes reflects their specific genetic composition and structural characteristics. Alterations in
GC content may affect processes such as DNA unwinding and transcription, leading to abnormal gene
expression and triggering foetal developmental abnormalities. Therefore, the model results appear
reasonable.

Observation of the above results reveals instances where regression coefficients exhibit large
absolute values alongside large p-values. This is a common and reasonable occurrence. It typically
indicates that the feature may exhibit a strong tendency to influence outcomes, but due to factors such
as small sample size, multicollinearity, insufficient variance, or noise interference, the current data
fails to provide sufficient statistical evidence to confirm its significance.

Following the results, this paper conducted an effectiveness analysis of the logistic regression
model, calculating the likelihood ratio chi-squared value, p-value, and classification accuracy, and
plotting the ROC curve as shown in Figure 5:
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The likelihood ratio chi-squared value obtained is 107.035, with a p-value of 6.799 x 104, This
indicates that the logistic regression model is significantly effective overall, demonstrating a robust
ability to explain the relationship between the independent variables and the dependent variable
“chromosomal aneuploidy”. The calculated classification accuracy reached 0.887, indicating strong
predictive capability for sample classification. The model accurately identifies chromosomal
aneuploidy in most cases. However, the ROC curve area under the curve (AUC) of 0.55, as shown in
the figure, is only marginally above 0.5. This suggests room for improvement in distinguishing
positive from negative samples, with potential suboptimal prediction for certain cases. In summary,
the logistic regression model is generally effective with decent classification accuracy, though room
for optimisation remains in precisely distinguishing sample categories.

Five of the top six most influential features identified by both the logistic regression and random
forest models overlap: GC content of chromosome 13, GC content of chromosome 18, GC content of
chromosome 21, GC content, and X chromosome concentration. Consequently, a method for
determining female foetal abnormalities was established based on the metric values of these five
features. By re-training the logistic regression model to learn the relationship between features and
the dependent variable, the coefficients and intercept for these five features were extracted. This
ultimately yielded the following classification formula:

logit(p) =—20.5021 — 25.4383x, — 73.2661x,
1+33.0427x, + 23.5054x, +14.7007 X

If logit(p) >0, it is determined to be an abnormal female foetus; if logit(p) <0 , it is
determined to be a normal female foetus.

(21)

4. Summary

This study presents both qualitative and quantitative analyses of the relationship between foetal Y
chromosome concentration and maternal BMI alongside gestational age at detection, establishing a
multiple linear regression model. By converting multi-objective optimisation into single-objective
optimisation through assigning weights according to target importance, the complexity of the model
was reduced. Whilst exploring multiple characteristic indicators affecting female foetal abnormalities
and determining diagnostic methods, the logistic regression model—a widely applied statistical
learning method for classification problems, particularly suited to binary classification tasks—
demonstrated high compatibility with Problem 4, exhibiting favourable model adaptability. However,
certain limitations persist, such as suboptimal model fit due to insufficient consideration of
influencing factors. This may stem from the limited number of adopted factors, potentially obscuring
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numerous latent relationships. Further research will address this issue in subsequent stages.
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